Department of Engineering Services TAT and SOP # TAT Engineering Service Division # 1. <u>Compliance Checking of Building Designs:</u> | Process Name | Concerned Agency | TimeFrameforService
Delivery | |--|--|---------------------------------| | Application for approval for building construction | Dzongkhag Administration | | | Scrutiny of Architectural Drawings | Architectural Section, ESD, DES, MoWHS | 7 days (3 officers) | | Scrutiny of Structural Drawings. | Structural Section, ESD, DES, MoWHS | 5 days | | Scrutiny of Electrical Drawings | Electrical Section, ESD, DES, MoWHS | 5 days | # 2. <u>Designing</u>, <u>Estimating</u> and <u>Procurement of Works:</u> | Process Name | Concerned Agency | Time Frame for
Service Delivery | |---|--|------------------------------------| | Preparation of Conceptual designs, understanding clientele requirements etc. | Architectural Section, ESD, DES, MoWHS | 45 days | | Designing/drafting details of plans, elevation, sections, etc. | Architectural Section, ESD, DES, MoWHS | 30 days | | Drafting details of doors, windows, rabseys, water and sanitation system, etc. | Architectural Section, ESD, DES, MoWHS | 60 days | | Preparation of detail structural design and drafting | Structural Section, ESD, DES, MoWHS | 35 - 45 days | | Preparation of detail electrical design, estimation and drafting | Electrical Section, ESD, DES, MoWHS | 30 - 35 days | | Preparation of detail estimate for civil infrastructure | Estimate Section, ESD, DES, MoWHS | 20 - 30 days | | Preparation of bidding documents, technical sanction, invitation of bids, bid evaluation and work award | Estimate Section, ESD, DES, MoWHS | 40 - 55 days | # 3. Review of Designs and Estimates prepared by consultants: | Process Name | Concerned Agency | Remarks | |---|--|--| | Scrutiny of Architectural Designs | Architectural Section, ESD, DES, MoWHS | | | Scrutiny of Structural designs | Structural Section, ESD, DES, MoWHS | designing, estimating and procurement of | | Scrutiny of Electrical designs and review of estimates for electrical works | Electrical Section, ESD, DES, MoWHS | works. | | Review of estimates for civil infrastructure works | Estimate Section, ESD, DES, MoWHS | | # 4. <u>Publication of BSR:</u> | Process Name | Concerned Agency | Time Frame for
Service Delivery | |--|------------------------------|------------------------------------| | Preparation of material inventory based on BSB approved list | BSR Section, ESD, DES, MoWHS | 20 days | | Rate collection of Material, Labour, Machinery from the four base towns. | BSR Section, ESD, DES, MoWHS | 20 days/base
towns | | Compilation, Rate analysis using LMC | BSR Section, ESD, DES, MoWHS | 20 days | | Formatting, proof reading, printing | BSR Section, ESD, DES, MoWHS | 20 days | # 5. <u>Development of Labour, Material, Equipment Coefficient and Specifications.</u> | Process Name | Concerned Agency | Time Frame for
Service Delivery | |---|------------------------------|------------------------------------| | Inventorying construction activities (Nationwide) | BSR Section, ESD, DES, MoWHS | 20 days | | Data Collection (Note: depends upon number of samples to be collected) | BSR Section, ESD, DES, MoWHS | 5 days/item of
work | | Data Sampling & Analysis (Note: depends upon number of samples to be collected) | BSR Section, ESD, DES, MoWHS | 2-3 days/item of
work | #### 6. Development of Guidelines/Manual. | Process Name | Concerned Agency | Time Frame for Service Delivery | |---|------------------|---------------------------------| | Desk-study on existing practices, legislation, rules and regulations. | ESD | 20 - 90 days | | Gathering related materials, making illustration, etc. | ESD | 15 - 30 days | | Drafting, brainstorming, etc. | ESD | 20 days | | Finalization, publication, etc. | ESD | 15 - 30 days | # **Standard Operating Process** #### Water and Sanitation Division, Dept of Engineering Services | S.No | Activity | Unit | Working Days
required in
worst scenario | Working Days required in best scenario | |------|---|--------------|---|---| | 1 | Design of Water Supply system | | | | | | 1.1 Site visit to study the feasibility (excluding travel days) | | 7 | 7 | | | 1.2 Survey of the water source, pipeline | | 21 | 21 | | | 1.3 Design of water supply systems (manual designing) | Days/ assign | 45 | 2 | | | 1.4 Technical Drawing | | 15 | 9 (with training, as of now
not even a basic Auto CAD
training given) | | | 1.5 Estimating of the water supply systems(manually) | | 15 | 8 (using estimating
software. Eg construction
manager) | |---|--|--------------|--------|---| | | 1.6 Technical support during implementation (excluding travel days) | | 7 | 7 | | | Total | | 110 | 54 | | 2 | Sanitation | | | | | | 2.1 Sewerage systems | | | | | | 2.1.1 Surveying of the area to be sewered | | 10 | 10 | | | 2.1.3 Design of sewer network (Manual designing) | | 25 | 2 | | | 2.1.4 Drawing of sewer components | Days/ assign | 14 | 9 (with training, as of now
not even a basic Auto CAD
training given) | | | | | | 8 (using estimating software. Eg construction manager) | | | 2.1.5 Estimating for sewer components | | 14 | | | | 2.1.6 Technical support during implementation (Excluding travel days) | | 9 | 9 | | | Total | | 72 | 38 | | | 2.2 Solid Waste | | | | | | 2.2.1 Design of landfill | | | | | | 2.2.1.1 Topo survey of the proposed area including site selection | | 7 | 7 | | | 2.2.1.2 Design of landfill (manual designing) | | | 6 (if explored for software for cut and fill) | | | 0 0 | | 20 | 6 (with training as of now | | | 2.2.1.3 Drawing of the landfill | Days/ assign | 14 | 6 (with training, as of now
not even a basic Auto CAD
training given) | | | 2.2.1.4 Estimating of the landfill and components | | 10 | 4 (using estimating software. Eg construction manager) | | | 2.2.1.5 Designing and estimation of landfill approach road | | 14 | 6(software for road
designing. Eg MX road) | | | Total | | 65 | 29 | | 3 | Sustainable Sanitation and Hygiene for All (SSH4A) under Small Towns Programme in collaboration with Netherlands Development Organization(SNV), Bhutan | Days/year | 180 | | | 4 | Construction of urban water supply infrastructure (GoI Nu 492 Mn approved for 11 FYP) for Paro, Tserang, Phuntsholing and Monggar towns | 11 FYP | 11 FYP | | | 5 | Water Safety Plan (WSP) Implementation to all Dzongkhags | days /year | 140 | | | 6 | Zero Waste Project for Mongartown(till 2016) (excluding travel days) | days /year | 60 | | | | Preparation of ToR, tender documents including evaluation for water and | Days/assign | | 14 (If it can be done by | | 7 | sanitation works | | 132 | procurement section) | | 8 | Water and sanitation monitoring visits to Dzongkhag municipalities and Thromdes | Days /year | 100 | | ### **SOP for FEMD** Standard operating procedure for carrying out flood protection works The roles and responsibilities of specific agencies that have to follow for carrying out the flood management works: | Sl.No | Activities | Description | Responsible
Agency(ies) | TaT
(Days) | Remarks | |-------|--|---|---|---|--| | 1 | Budget securing | The agency should process, obtain and plan budgeting for implementing the Flood related works. | Dzongkhag/T
hromde | | Budget for particular works should be earmarked. | | 2 | Initial site identification | The concerned agency should identify critical sites with flooding risk and propose for technical support by using standard format. | Dzongkhag/T
hromde | | Use ANNEX I form. | | 3 | Forwarding the request for technical support in flood works. | The concerned Organization/Institutions should request the DES, MoWHS for technical support related to flood assessment studies and management works. | Dzongkhag/T
hromde/Instit
ution/NGO | | Standard format should be attached | | 4 | Preparation to visit the site | Desk study for specific area (past flooding events, meteorological and hydrological assessment). | FEMD | 10
working
days | After receipt of the request letter | | 5 | Joint site investigation | Joint site visits, field survey and field assessment will be carried out. | Dzongkhag/T
hromde and
FEMD | Duration will depend upon the site conditions | During the site visit, the logistics should be arranged by concerned Agency. | | 6 | Decision on the type of measures required | Whether to propose for long term or short-term measure | FEMD/DES | 5 working
days | The decision will be made by FEMD | | 7 | Response to the Agency | Reporting back to the Agency about the findings of the site visits. | FEMD | 5 working
days | After joining office from the site visits and field assessment. | | A | | Short-term measure | | | | | i | Design of the measures | Design, Drawing and Estimation of the measure. | FEMD | 21
working
days | After submitting the findings by FEMD, concerned agency should request for the design of the proposed structures | | ii | Technical sanction of the design | Forward the complete set of design documents to the concerned agency. | FEMD | 3 working
days | | | В | | Long term measure for prioritized areas | | | | | i | Field assessment | Detailed field assessment using assessment forms. | FEMD | 15
working
days | Depands on size of project area | | ii | Cross section
Survey | Carry out detail field survey of the proposed area for long term measures. | FEMD | 21
working
days | Depands on size of project area | |------|---|---|---|-----------------------|---| | iii | Hydrological assessment | Hydrological assessment and analysis (Statistical /modeling) using compiled data. | FEMD | 60
working
days | Minimum man days | | iv | Modelling | Hydrodynamic modeling by using flood modeling software (Arc-GIS, HEC-RAS etc.) | FEMD | 45
working
days | Minimum man days | | V | Analysis of results and scenario | Propose appropriate structural measures based on model results. | FEMD | 5 working
days | Minimum man days | | vi | Flood
Management
Plan | Draft the sustainable flood management plan accordingly to the outcomes of the detailed study. | FEMD | 60
working
days | Minimum man days | | vii | Drawing and
Estimation | Drawing of the flood protection
structures and prepare estimates
(BoQ) and technical specifications
as per the design. | FEMD | 30
working
days | Minimum man days | | viii | Set of complete
technical
documents | Forward the complete set of flood management plan and design structure documents to the concerned agency. | FEMD | 5 working
days | | | ix | Monitoring | To make site visits for monitoring of the works in order to ensure quality and compliance of design. | FEMD | | As and when required | | 8 | Obtain public and environmental clearances | The concerned agency should process and obtain public and environmental clearances. | Dzongkhag/T
hromde | | | | 9 | Procurement of works | The tendering, evaluation and awarding of work should be carried out | Dzongkhag/T
hromde | | Specifications and designs should be included properly. | | 10 | Implementation and site supervision | Implementation of flood management structures should be carried out as per design and specifications. | Dzongkhag/T
hromde | | Inform FEMD in case of any design/site related issues. | | 11 | Monitoring and work progress | FEMD shall carry out monitoring of the work if deemed necessary or upon request from the concerned Agency. | Dzongkhag/T
hromde | | However, if the budget is with FEMD, the division will plan stage wise monitoring programme | | 12 | Sharing of flood
related
informations/do
cuments | Any organization in need of flood related documents (flood hazard maps, flood risk maps and flood assessment reports etc) should request in writing to the DES. | Dzongkhag/T
hromde/Instit
ution/NGO | | The written request should be made to the Director,DES | # ANNEX I FORM Planned and Budgeted Flood Protection Works in the Proposed FYP | Sl.
No. | Therails of the flood brotection measure brobosed | | Response from requesting agency. | | |------------|--|----------|----------------------------------|--| | 1 | Name of Dzongkhag/Thromdey | | | | | 2 | Name of River or stream along which the flood protection works is planned. | | | | | 3 | Name of Village and Gewog in which the work will be implemented. | Village: | Gewog: | | | 4 | Are the Design, Drawing and Estimate of the flood protection work completed? | Yes | No | | | 5 | If Yes for Sl. No. 4, What is type and the length of the flood protection work planned? | Type: | Length: | | | 6 | If No for Sl. No. 4, does the Dzongkhag/Thromdey Administration require technical assistance for Design, Drawing and Estimate from FEMD, DES, MoWHS? | Yes | No | | | 7 | If Yes for Sl. No. 6, mention the month and year the Administration would expect the detailed Design, Drawing and Estimate from FEMD, DES, MoWHS? | | Year: | | | 8 | What is the budget earmarked for the planned flood protection work? | | gultrum: | | | 9 | When is the tentative month and year for implementation of the work? | Month: | Fiscal Year: | | ### **SOP for EARRD:** 1. Engineering Adaptation and Risk Reduction Division, Quality Assurance Section. | | 1.1 PLAN: 2014-015 | | | | | | | | |--|---|--|--|---|---|---|--|--| | Outputs | Output indicator | Activities | Sub-activities | UNIT | Duration
required
(working
Days) | Existing
Staff
strength | Remarks | | | | sustaina ble and quality nfrastru ctures chrough adoptati on of approve d tandard standard conformity 3. Strengthen EARRD & Dzongkhag Engineers capacity. 4. Raise Awareness. 5. System to ensure quality in the field. 6. Set up laboratory for related/scientific studies. 7. Institutionalize information and | | Planning for
quality and safety
improvement. | Days | 20 | | Quality and safety are
directly proportional to
Budget & Time hence all
developing partners to plan
accordingly. | | | provide
sustaina
ble and
quality | | Establishment of procedures to check conformity 3. Strengthen EARRD & Dzongkhag Engineers capacity. 4. Raise Awareness. 5. System to ensure quality in the field. 6. Set up laboratory for related/scientific studies. 7. Institutionalize information and Establishment of procedures to check conformity 3. Review and improve guidelines , manual, Related policies and Evaluatio n. | Inform short fall
procurement
manual and
bidding
document{Revie
w on SBD} | Days | 35 | | Review on SBD, E-tools and corrosponding roles and responsibilities of the engineers developed and presented to Division. | | | infrastru
ctures
through
adoptati | | | , manual,
Related | Quality assurance plan at design stage. | Days | 15 | Two
Engineers | Study on Check list for QA at Design stage in progress | | approve
d
standard | | | Evaluatio | Quality assurance plan for building construction. | Days | 40 | | Study for QA plan in progress | | | knowledge bank for
sharing and
reference on quality
assurance plans and
quality construction. | | Inspection
checklist for
supervision in the
field | Days | prog | Developing checklist in progress with items of work involved in the construction. | | | | Establish
monitorin
g
mechanis
m to | Study on top
down and bottom
up approaach on
the effect on
quality. (Total
Quality
Management). | Days | 40 | 1. Study on merits and demerits on Design, drawings and technical support provided from the HQs and implemented by the LG. 2. Study on planning, Design and implementation at the grassroots level on quality management. | |--|---|------|----|---| | check Quality Assurance methods in built in the field | Evaluate quality
assurance plan
and quality
management
implementation at
field. | Days | 20 | To be evaluated actual field of construction. | | | Develop Reports,
Feedback and
recommendations. | Days | 14 | Collection of feedback recycles inform of questionaries developed. | | | Training on
quality assurance
and Quality
management
programme and
enables them to
perform actively | Days | 40 | Two days per Dzongkhag | | Capacity
building at
Dzongkha
g level | Familiarize
dzongkhag
engineers with
ISO 9000 quality
management
essentials. | Days | 20 | One day each per
Dzongkhag | | | Create awareness
and importance on
the handing taking
notes between the
client and the
contractors. | Days | 20 | Explanation/Awareness on quality checklist and handing taking notes | | Sectoral
coordinati
on and
trainings | Coordinating
training for
engineers of
various agencies
on quality
assurance. | Days | 10 | Arrange technical training on quality management in the Technical Training Institutes within the country. | | Educate
and raise
awareness
on quality
assurance
and its
benefits. | Awareness
workshop and
seminar on quality
assurance of
materials,
equipments and
construction. | Days | 40 | Proposed a day visit to every
Dzongkhag to propagate the
details of basic testing tools
and equipment, quality
management and roles and
responsibilities of the site
engineer in the construction. | #### 1.2 Plan 2015-2016 | Outputs | Output indicator | Activities | Sub-activities | Unit | Duration
required
(working
Days) | Existing
Staff
strengt
h | Remarks | |---------|------------------|------------|----------------|------|---|-----------------------------------|---------| |---------|------------------|------------|----------------|------|---|-----------------------------------|---------| | | | | Material quality conformity at source. | Days | 60 | | Develop/research on the physical and chemical properties checklist | |---|---|--|--|------|----|---|---| | | | | Plant and equipment. | Days | 45 | | Develop/research on the requirement of plants and equipment based on technology applied. | | | | Develop
quality
control
Guide
lines and | Quality at
Planning,
Surveying and
Design stage. | Days | 20 | | | | | | Quality
managem
ent | Quality assurance plan for building construction. | Days | 40 | | Strengthen quality management system at | | | 1. Systematic compliance of relevant standards and guidelines. 2. | systems. | Quality on Building and Awarding Document. | Days | 20 | | Department, Dzongkhags, Gewogs & construction levels. | | To
provide
sustaina | Establishment of procedures to check conformity 3. Strengthen EARRD | | Quality on implementation. | Days | 40 | | | | ble and
quality
infrastru
ctures | & Dzongkhag Engineers capacity. 4. Raise Awareness. 5. System to ensure | Implemen
tation
Monitorin
g
Mechanis
m | Collect Feedbacks
/Complains from
the field. | Days | 15 | Two
Enginee
rs | Develop monitoring and rewarding mechanism | | through
adaptati
on of
approve | quality in the field. 6. Set up laboratory for related/scientific studies. 7. | | Constraint on quality plans. | Days | 30 | | | | d
standard
s | Institutionalize information and knowledge bank for sharing and | Set up laboratory and manpower | To conform quality of construction materials | Days | 30 | | Develop mandatory test requirements for all | | | reference on quality
assurance plan and
quality construction. | | To conform the quality on the product of the Materials | Days | 40 | | construction materials and quality checklist on products. | | | Monitorin | Coordinating
training for
engineers of
various agencies
on quality
assurance. | Days | 15 | | Arrange technical training on quality management in the Technical Training Institutes within the country. | | | | | g and
Evaluatio
n
Mechanis
m | Awareness
workshop and
seminar on quality
assurance of
materials,
equipment and
construction | Days | 40 | | Proposed a day visit to every Dzongkhag to propagate the details of basic testing tools and equipment, quality management and roles and responsibilities of the site engineer in the construction and collect constructive feedbacks. | #### 1.3 Plan 2016-2017 | Outputs | Output indicator | Activities | Sub-activities | Unit | Duration
required
(working
Days) | Existing
Staff
strengt
h | Remarks | |---------|------------------|------------|----------------|------|---|-----------------------------------|---------| |---------|------------------|------------|----------------|------|---|-----------------------------------|---------| | | Systematic compliance of relevant standards | Monitorin
g and
Evaluatio
n
Mechanis
m | Collect feedback/
complains from
the field. | Days | 414 | | Visit all climatic regions to collect feedbacks and study | |---|---|---|--|------|-----|----------------------|---| | To
provide
sustaina | and guidelines. 2. Establishment of provide sustaina ble and quality infrastru ctures through adaptati on of approve d and guidelines. 2. Establishment of procedures to check conformity 3. Strengthen EARRD & Dzongkhag Engineers capacity. 4. Raise Awareness. 5. System to ensure quality in the field. 6. Set up laboratory for related/scientific studies. 7. Institutionalize | | Constraint on quality plans | Days | 414 | Two
Enginee
rs | on the complains. If necessary consultant may be deployed for technical accuracy. | | quality
infrastru
ctures
through | | | Evaluate | Days | 60 | | Evaluate on the improvement | | on of approve | | | Report | Days | 30 | | infrastructure built. | | s | information and
knowledge bank for
sharing and
reference on quality
assurance plan and
quality construction. | | Incorporate necessary changes/amendme nts in guidelines, manual, policies after feedbacks through evaluations. | Days | 50 | | Involve all sects of expertise in the engineering field to comprehend and incorporate at the appropriate areas. | #### 1.4 Plan 2017-2018 | Outputs | Output indicator | Activities | Sub-activities | UNIT | Duration
required
(working
Days) | Existing
Staff
strengt
h | Remarks | |---|--|-----------------------------|--|------|---|-----------------------------------|---| | | Establishment of procedures to check conformity 3. Strengthen EARRD & Dzongkhag Engineers capacity. 4. Raise Awareness. 5. System to ensure quality in the field. 6. Set up laboratory for related/scientific studies 7. | Assurance
Monitorin
g | Collect
feedbacks/issues
from
field/Dzongkhags | Days | 100 | Two
Enginee
rs | Visit all climatic regions to collect feedbacks and | | To provide sustaina ble and quality | | | Gaps in quality
plans as part of
contract
documents and
specifications | Days | 60 | | be involved where core technical specifications necessary. | | infrastru
ctures
through
adoptati
on of
approve
d
standard | | | Evaluate quality
assurance plan
and quality
management
process &
implementation in
field | Days | 60 | | Evaluate on the improvement in quality assurance of the infrastructure built. | | standard
s | Institutionalize
information and
knowledge bank for
sharing and
reference on quality | | Report and recommendations | Days | 20 | | Involve all sectoral experties in the engineering field to comprehend and incorporate necessary updates in the appropriate areas. | | | assurance plan and quality construction. | Dessimen
ation &
and
Capacity | Research best
practices in
construction
industry, adopt
and update in the
domestic industry,
dessimenate and
train engineers on
the new
recommendations | Days | 25 | | Target both govt and private
engineers in new and
effective quality assurance
mechanisms for adoption and
practice. Also, support in
establishment of basic quality | |--|--|--|--|------|----|--|--| | | | Building | Plan & develop
quality assurance
facilities in all
district
engineering
offices | Days | 25 | | management facilities In the field. | | | | | Validate Quality
conformation of
construction
materials | Days | 60 | | | | | | Laborator
y and
manpower
managem
ent | Assist Quality
conformation on
product of the
materials (Precast
products). Such as
Concrete, RCC,
Doors, Windows
etc | Days | 80 | | Collaboration with local construction materials supplier and product manufacturer. Also close collaboration with exiting private testing facilities to ensure better quality | | | | | Assist private
testing facility
services in
providing
efficient and
responsible
quality services
and growth in the
field | Days | 20 | | assurance in the construction industry. | | | | | Quality Assurance | Days | 15 | | | | | | Networkin
g and
interacting
with
institute | Total Quality management | Days | 15 | | Networking and interacting
with institute and technical
college and institutes on
quality construction to adopt
quality construction for | | | | and
technical
college
and
institutes
on quality
constructi
on | Internation
Standards &
Practices(ISO
2000 etc) | Days | 40 | | ensuring resilient
infrastructures. This ensures
keeping abreast with regional
and international level
practices and know hows | | | | | Engineering college and Vocational Institutes for introducing syllabus on quality | Days | 30 | | practices and know hows
besides opportunites for joint
collaborations. | # $2. \quad {\sf RISK\,REDCUTION\,SECTION,ENGINEERING\,ADAPTATION\,\&\,RISK\,REDUCTION,\,DES,MoWHS}\\$ | SI.
No. | Activity | Sub-activities | Unit | Duration
Required
(working days) | Existing
staff
strength | Remarks | |------------|------------------------------------|--|-----------------|--|-------------------------------|--| | | | a. Define building structure types across Bhutan. | | - | | Already defined | | 1 | Data and
1 Inventory | b. Data collection format & actual field data collection. | working
days | 60 (total 120) | 3 | The number of days only reflects the number of days a team of two will take for the representative survey of one Dzongkhag. The detailed survey will be carried out by the Dzongkhag Engineering Sector. | | | Establishment | c. Data compilation and periodic updating. | aays | 30 | | For initial compiling only after receiving data from the Dzongkhags | | | | d. Develop structural parameters
(desktop study, software
modelling/simulation as well as
field and experimental/laboratory
research). | | 100 | | The number of days reflected is for one typology. | | | | Study and research on regional and global vulnerability assessment practices. | | 20 | | | | | | b. Develop a quick and basic tool
for Vulnerability Assesment for
dominant building typologies. | | 40 | | | | | Vulnerability | c. Capacity building of engineers on vulnerability assessment. | working days | 54 | 3 | 3 days training in 6 centers over three years | | 2 | Assesment | d. Field assessment (EARRD & Dzongkha Engineering Sector). | | 36 | | 2 days field assessment in 6 centers over three years. This will build capacity of the Dzongkhag engineers to carry out the comprehensive assessment of their respective Dzongkhags | | | | e. Vulnerability database. | | 20 | | Initial compiling | | | Post- | a. Capacity building of engineers
of post-earthquake safety
assessment of structures. | 1. | 54 | | 3 days training in 6 centers over three years | | 3 | earthquake
safety
assessment | b. Build a strong reserve of
trained and capable engineers for
response in times of earthquake
disasters. | working
days | - | 3 | This needs to be a continuous process | | 4 | Detrofitting | a. Research on doable retrofitting techniques for Bhutan. | working | 20 | 3 | | | 4 | Retrofitting | b.
Procurement/tendering/evaluation | days | 40 | 3 | | | | | c. Pilot retrofitting of buildings (4 numbers) | working | 120 | | Periodic supervision of the retrofitting at site | | | | d. Retrofitting documentation of
the pilot buildings which will also
serve as a guideline. | days | | | | | | | e. Capacity building of engineers on retrofitting. | working | 20 | | 5 day training at the four sites | | | | f. Capacity building of masons on retrofitting through hands on training. | days | 20 | | 5 day training at the four sites | | 5 | Stone masonry construction | a. Revision of stone masonry guidelines. | working
days | 10 | 3 | | | guidelines | b. Capacity building of engineers on earthquake resilient stone masonry construction. | | 36 | 4 day training in 9 dzongkhags | |------------|---|-----------------|----|---| | | c. Capacity building of masons
and local leaders on earthquake
resilient stone masonry
construction. | working | 36 | 4 day training in 9 dzongkhags | | | a. Study and research on good timber construction practices in Bhutan and elsewhere. | days | 20 | | | | b. Develop guideline for timber construction. | working | 30 | | | | c. Capacity building of engineers on timber construction. | days | 60 | 3 days training in the 20
Dzongkhags | | | d. Capacity building of masons, carpenters and local leaders on timber construction. | working
days | 60 | 3 days training in the 20
Dzongkhags | | | a. Study and research on fire safety codes. | days | 20 | | | | b. Develop and introduce fire
codes for vernacular as well as
reinforced concrete homes. | working | 30 | | | | c. Capacity building/raising
awareness of engineers on fire
safety. | days | 60 | 3 days training in the 20
Dzongkhags | | | d. Capacity building/raising
awareness of
engineers/masons/homeowners on
fire safety. | working | 60 | 3 days training in the 20
Dzongkhags | | | a. Study of traditional roof system and their strength and vulnerabilities. | days - | 20 | | | | b. Develop and introduce
windstorm resistant roofing
system. | working | 30 | | | | c. Capacity building of engineers
on windstorm resistant roofing
system. | days | 60 | 3 days training in the 20
Dzongkhags | | | d. Capacity building of masons
and carpenters on windstorm
resistant roofing system. | working | 60 | 3 days training in the 20
Dzongkhags | | | a. Study and research on confined masonry practices. | days | 30 | | | | b. Develop guideline for confined masonry construction. | working | 30 | | | | c. Capacity building of engineers
on confined masonry
construction. | days | 60 | 3 days training in the 20
Dzongkhags | | | d. Capacity building of masons,
carpenters and local leaders on
confined masonry construction. | working
days | 60 | 3 days training in the 20
Dzongkhags | | | a. Study on existing IS Codes. | j | 30 | | | | b. Approval and compliance system. | working - | 10 | | | | a. Frame Policy and Legal requirements for engorcement of Codes and Guidelines. | days | 60 | | | | b. Frame appropriate strategies for raising awareness, implementation and enforcement. | working
days | 30 | | | | a. Study on non-destructive and destructive testing methodology. | | 15 | | | | b. Procurement of tools/tendering/evaluation | working
days | 15 | | | | | c. Develop/adopt procedures and
methodology, criteria and testing
grades appropriate to Bhutan. | | 15 | | | |----|----------------------------------|---|-----------------|----|---|---------------------------------| | | | d. Develop manual. | | 15 | | | | | | Advanced technical training on
various aspects of earthquake and
structural safety | working
days | 10 | | Ex-country/in-country trainings | | | | b. Fire safety code | working | 10 | | Ex-country/in-country trainings | | | | c. Windstorm protection | days | 10 | | Ex-country/in-country trainings | | 14 | Course guides | a. Prepare course guide and content for introduction in the college, polytechnique and vocational level courses in the country. | working | 30 | 3 | | | 14 | and content for
Stone Masonry | a. Prepare course guide and content for introduction in the college, polytechnique and vocational level courses in the country. | days | 30 | 3 | | | 16 | NT . 1 . | a. International. | working | 20 | 2 | | | 16 | Networking | b. Regional. | days | 15 | 3 | | | | | c. National | | 10 | | | | | | Planning, Development,
Monitoring, evalauation and
periodic reporting of World Bank
and UNDP projects | working
days | 60 | | | | | | | | | | | # 2.2 | SI.No. | | Activity (for 4 years of 11FYP) | | | | Duratio
n
Require
d
(Workin
g Days) | Existing Staff
Strength | Remarks (for 4
years) | |--------|---|----------------------------------|--|--|-----------------------------|--|---|--| | | | | | Draft and signing of MoU with the Dzongkhag Administration/Institution head. | 10 days
/dzongkhag | 30 | 2 | Drafting of MoU in consultation at Division, Departmental level and with the Dzongkhag | | | Initiation of
Pilot Project
(Implementa | Executio | Pilot | In-house capacity
building/
familiarization | 5 days per new project case | 15 | above
mentioned 2 | | | 1 | tion of the n of Project | Project
Component | Familiarization and
capacity building
of dzongkhag
engineers, local
leaders, masons
and community | 10 days per
dzongkhag | 30 | above
mentioned 2 | Duration required calculated in all activites are effective duration. | | | | | | | Follow up i.e.,
monitoring and
evaluation of CSEB
Pilot projects. | 5 days
/dzongkhag | 15 | above
mentioned 2 | | | | Procuremer
softwares/to
lication | ot of
ols/equipments/pub | 21 days per
procurement | 42 | above
mentioned 2 | for average 2 procurements | |--|--|--|----------------------------|-----|----------------------|--| | | In-house ca | pacity building | 10 days per new case study | 10 | above
mentioned 2 | | | Promoti | | Draft and signing
of MoU with the
Dzongkhag
Administration/Ins
titution head. | 10 days
/dzongkhag | 30 | above
mentioned 2 | for 3 districts | | on and
Implem
entation
of CLC
technol
ogy | Pilot
Project
Component | Familiarization and capacity building of dzongkhag engineers, local leaders, masons and community | 10 days per
dzongkhag | 30 | above
mentioned 2 | | | | | Follow up i.e.,
monitoring and
evaluation
projects
implemented | | 15 | above
mentioned 2 | 3 districts | | | Procuremer
softwares/to
lication | ot of
ols/equipments/pub | | 60 | above
mentioned 2 | | | | In-house ca | pacity building | | 5 | above
mentioned 2 | | | | Developmer | nt of guide/manual | | 120 | above
mentioned 2 | includes study
and design of
earth
technology | | Portable
Electic
earth
rammer
s | | Draft and signing of MoU with the Dzongkhag Administration/Ins titution head. | 10 days
/dzongkhag | 50 | above
mentioned 2 | 5 relevant
districts | | | Pilot
Project
Component | Familiarization and
capacity building
of dzongkhag
engineers, local
leaders, masons
and community | 12days
/dzongkhag | 70 | above
mentioned 2 | | | | | Follow up i.e.,
monitoring and
evaluation of CSEB
Pilot projects. | 7 days
/dzongkhag | 35 | above
mentioned 2 | | | 2 | Technology
Study &
reviews | Embodi
ed
energy
study
for local
bulidng
material
s | Procurement of software and related publication for research study | days | 60 | above
mentioned 2 | Identification of relevant resources, source of resources and procurement of relevant resources | |---|----------------------------------|--|--|---|-----|----------------------|---| | | | | Training on embodied energy computation | 6 months
minimum for
database,
software,
training | 180 | above
mentioned 2 | Identification of training centre, software, database, tailoring of training (if need be) and actual training participation | | | | | Study of local building materials in terms of embodied energy | 6 months per
material case
study | 150 | above
mentioned 2 | Study of building materials in Bhutanese context i.e., source of material, raw material, transportation, manufacturing process, etc for the embodied energy computation | | | | Energy
simulati
on of
building
typologi
es | Procurement of consultant | days | 60 | above
mentioned 2 | Drafting of ToR
and
procurement of
consultant | | | | | Development of guidelines/manual | days | 180 | above
mentioned 2 | 6 months or
more
depending on
the
procurement of
softwares/
tools/publicatio
n necessary | | | | | Research on building typology on energy simulation | days | 250 | above
mentioned 2 | Field
assessment and
research studies
and
documentations | | | | | Procurement of softwares/tools/equipments/pub lication | days | 21 | above
mentioned 2 | | | | | | In-house capacity building | days | 30 | above
mentioned 2 | | | | | Termite
Ventilati
on | Procurement of consultant | days | 60 | above
mentioned 2 | Study and
literature
review for
drafting ToR,
actual drafting
of ToR and
procurement of
consultant | | | | | Developmer
guidelines/ma | | months | 20
months | above
mentioned 2 | minimum 20
months for pilot
study and
documentation | |---|----------------------------------|---|--|--|-----------------------|----------------------|---|--| | | | | | Procurement of softwares/tools/equipments/pub lication | | 90 | above
mentioned 2 | | | | | | In-house ca | pacity building | days | 45 | above
mentioned 2 | | | | | | Pilot
Project | Pilot project if a feasbile project is available | months | 18 | above
mentioned 2 | 1 .5 year
minimum
depending on
the size of the
project | | | | | Component | Follow up i.e.,
monitoring and
evaluation of CSEB
Pilot projects. | 30 days
/dzongkhag | 30 | above
mentioned 2 | | | | | Energy
Efficient
Door
Window
system | Research on door/window system | | months | 6 | above
mentioned 2 | | | | | | Development of guidelines/manual | | days | 180 | above
mentioned 2 | | | | | | Procurement of softwares/tools/equipments/pub lication | | days | 60 | above
mentioned 2 | | | | | | In-house ca | pacity building | days | 21 | above
mentioned 2 | | | | | Equipm
ents /
plants/
tools/
Softwar | equipments
rainwater h
ventilation, | e construction / plants [CLC, arvesting, termite hume pipes, double- w(timber) and other ts] | days | 90 | above
mentioned 2 | | | | | es | Study of the softwares. | e construction | days | 60 | above
mentioned 2 | | | 3 | Green
Construcito
n policy | Recruit consultant for development of green construction policy. Development of draft green construciton policy (Consultant) | | days | 30 | above
mentioned 2 | Identification of relevant resources, source of resources and procurement of relevant resources | | | | | | | months | 6 | above
mentioned 2 | | | | 4 | Networking | Participate in workshops, seminars, conferences relevant to the above mentioned works | | | days | 45 | above
mentioned 2 | Duration
depends on the
organizing party | | | | Procurement and famili
guidelines, codebooks, an
Register for membership s
council and so on
& Subscribe to internation
newsletters and journals | | and other books
o such as green
onal and national | days | 60 | above
mentioned 2 | The Division needs to keep abreast of all the relevant technology and technique for which participation at technical seminars, conferences, workshops and similar platform is highly | | | | | recommended | |--|--|--|-------------| | | | | | | | | | | | | | | |